完璧ではないAI

前回、AIによって無くなっていく仕事の内容を紹介しましたが、その多くが比較的単純な作業を中心とする仕事です。実際のところは、人と同等の知能をもつ“万能の機械”というにはほど遠いのが現状だそうです。そして、それはAIにも“弱点”があるからなのです。

 

その一つが「フレーム問題」です。AIは決められた枠組み(フレーム)の中でしか命令をうまく処理できないという問題です。これはアメリカの哲学者ダニエル・デネット(1942~)が思考実験で示した、フレーム問題の実験です。その実験内容ですがAIを搭載したロボットを洞窟に送り出し、時限爆弾が乗ったバッテリーをとってこさせようとするものでした。

 

まず、1号機に「バッテリーを取ってこい」と命令しました。すると、AIが時限爆弾ごと運んできたため爆発が起こりました。そこで今度は2号機に「何か行動するときには、それによって起きる2次的な要素も考慮しろ」と命令を追加します。バッテリーを運べば時限爆弾も一緒についてくるという「2次的要素」が理解できれば、AIがうまくバッテリーだけを持ってくると予想したのです。しかし、AIはバッテリーを前に立ち止まってしまいます。バッテリーを上げたら天井は落ちないか、一歩踏み出したら壁のいろは変わらないか。といった突拍子もないような2次的要素を含めて、ありとあらゆることを延々と考慮してしまったのです。つまり「今回の命令に関係のある要素はどれか」ということがAIにはわからなかったのです。そこで3号機には「命令に関係のあるものと無関係のものを分けてから行動しろ」と命令しました。すると、AIは洞窟に入る前に立ち止まったのです。空気の成分、壁の色、太陽の位置。命令に無関係のことが周囲に無数にあったため、選別が終らなかったのです。AIは人のように「適当に考える」ということができないために、枠組みやルールのない問題ではあらゆる想定をして、無限に志向し続けます。これがフレーム問題と言われるものだそうです。人とちがい「適当」ということがまだAIはできないのですね。

 

ふたつ目の理由が「シンボルグラウンディング問題」です。AIはことばの「本当の意味」を理解していないというのです。これはシマウマを知らない子どもとAIに「シマウマは縞のある馬です」と教えたとき、AIと人の“言葉の理解”において根本的な違いが分かり、AIのもう一つの弱点が浮き彫りになるといいます。

 

子どもの場合、それまでの経験で「ウマ」と「縞」の意味を知っていれば(概念を獲得していれば)、縞のあるウマがどんな動物か、なんとなく想像できるのでしょう。そして、生きているシマウマを動物園で見た際に、「これがあのシマウマなのかな」と思うことができます。こうして、子どもは新しい言葉の意味と概念を獲得していきます。一方、AIはウマのつややかな毛並みも、たくましい筋肉も、大きないななきも実際に見たり聞いたりしているわけではありません。AIは「ウマ」や「縞」という単語を、コンピューター上の記号(文字列)としてのみ認識しています。つまり、「シマウマは縞のあるウマ」と教えられ、記号同士を結び付けたとしても、新たな記号ができるだけです。私たちが生きるこの実世界における「シマウマ」の本当の姿を、人と同じように理解することはできないのです。この“弱点”は記号が実世界の意味に直接結びついていないことから「シンボルグラウンディング問題(記号接地問題)」と呼ばれています。

 

このシンボルグラウンディング問題の解決するためにはAIが“記号の世界”を抜け出さなければいけません。そのためにAIと同程度の大きさの体と人の目や耳などに似たセンサーを与え、人と同じように実世界を経験させることが必要だという研究者もいます。このようにAIに「身体性」をもたせることで、シンボルグラウンディング問題だけでなく、常識も身につけフレーム問題の解決にもつながるという意見も出ているのだそうです。

 

このようにまだまだAIには問題は多々あり、なかなか人と同じような常識や思考方法ができるわけではないのです。そして、それこそが人の強みでもあるのだと思います。「フレーム問題」や「シンボルグラウンディング問題」この二つの思考は人に対する思いやりにもつながり、相手の思考を見通すような考えにもつながります。では、こういった問題を解決したAIは実現してくるのでしょうか。